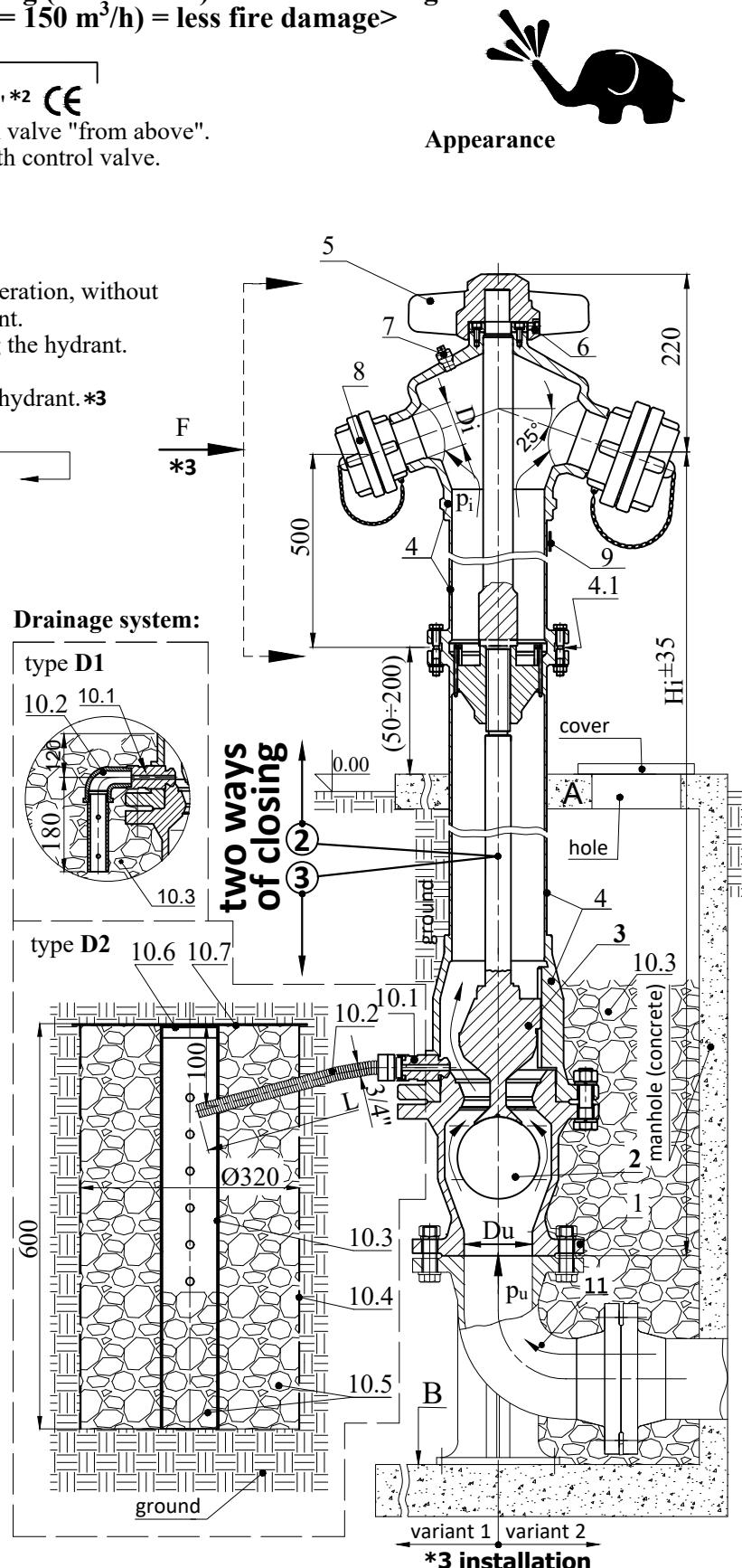


ABOVE-GROUND FIRE HYDRANT type LNH1

<Two in one = hydrant + isolating pre-valve>

<Dual reliability = possibility of use (closing from below)
even when the regular closing (from above) is malfunctioning>
<high flow rate ($K_v = 150 \text{ m}^3/\text{h}$) = less fire damage>

PROCUREMENT DATA: *1

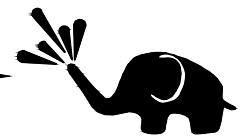

- * Name: Above-ground fire hydrant with break system
- * Made in accordance with the EN14384 standard, type "C" *2
- * Nominal sizes DN80, PN16. * Closing with the main valve "from above".
- * With isolation "pre-valve", closing "from below". * With control valve.
- * Activation without or with an additional tool.
- * The possibility of blocking unauthorized use.
- * Flow (for $D_i=2x50$); $K_v=\min.145 \text{ m}^3/\text{h}$
- * Activation moment: $MOT=\max.60 \text{ Nm}$.
- * Repair of the main valve; the other hydrants remain in operation, without digging up the ground and without dismantling the hydrant.
- * Drainage system "all outside"; repair without dismantling the hydrant.
- * Outlets tilted toward the ground by 25° .
- * Breakage due to force F ; no damage to the lower part of hydrant. *3
- * Breaking moment $M=\max.1200 \text{ daN}$. *3
- * Inlet connection : Flange EN1092-2 (Du80, PN16) (Du100, PN16)
Particular request, "describe"
- * Nominal height Hi : (1300) (1500) (1800)mm
Particular request, "specify"
- * Outlets D_i : (2x50+1x65)mm
- * Outlet couplings: (2xC+1xB) DIN, system "storz"
Specify label and standard
- * Drainage system: (D1) (D2)
Without
- * Medium: Water (technical) (drinking)
- * Colors of external surfaces: - aboveground part (without pipe): red
- underground part: black
special request
- * **Warranty period: 5 years.**
- * Deliver documents:
 - "Brochure";
 - "Test Report", issued by an "authorized body";
 - "Certificate of Conformity", issued by an "authorized body";
- *1 → If necessary, "omit/add"
- *2 → The standard determines the min.performance = "the least good allowed" hydrant.

Appearance:

1. Inlet flange
2. Isolation "pre-valve" (closing from below)
3. Obturator - "main valve" (closing from above)
4. Body
- 4.1 Place of breakage, due to the impact of force F
5. Cap (keyless activation)
6. Blocking of unauthorized use
7. Control valve (safety; sealing) 8. Outlet couplings
9. Ident plate ("CE", " K_v ", ...)
10. **Drainage system:** (not defined by the standard)
- type D1:
 - 10.1 Drain valve 10.2 Drain pipe
 - 10.3 Stone → (16÷31)mm*4
- type D2:
 - 10.1 Drainage valve
 - 10.2 Drain pipe → (L=?mm)
 - 10.3 Distribution pipe 10.4 Wire basket*4
 - 10.5 Stone → (16÷31)mm*4
 - 10.6 Cover 10.7 Plastic foil*4
 - 11. Arch with foot EN545*4

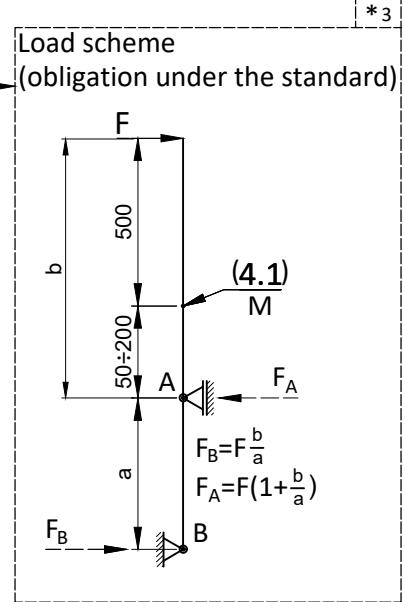
*4 → Provided by the buyer

Appearance


ABOVE-GROUND FIRE HYDRANT type LNH1

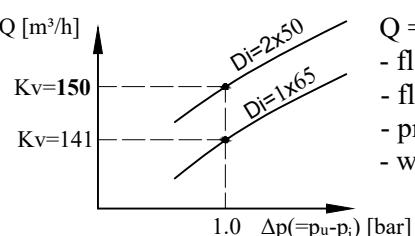
<Two in one = hydrant + isolating pre-valve>

<Dual reliability = possibility of use (closing from below)
even when the regular closing (from above) is malfunctioning>
<high flow rate ($K_v = 150 \text{ m}^3/\text{h}$) = less fire damage>


Basic technical characteristics:

- * Safe = complies with the requirements of the EN 14384 standard =
- * Purpose: Taking water from underground pipelines for fire fighting and communal needs
- * See "Procurement data" P1/2
- * Flow: $K_v = 150 \text{ m}^3/\text{h}$, for $D_i = 2 \times 50$
- * Moment of activation MOT: max. 50Nm (Class 1)
- * Breaking force $F = 1100 \text{ daN}$
- * In case of breakage: the hydrant remains closed, and part of the hydrant is below the fracture site remains undamaged
- * Foundation
- * Weight $\sim (53 \div 67) \text{ daN}$ for $H_i (1300 \div 1800) \text{ mm}$
- * Materials:
 - hydrant body castings nodular cast
 - cap, and output couplings aluminium
 - sealants polypropylene/elastomers
 - pipe of body, spindle, and obturator seat stainless steel

Advantages:


- * Two ways of use = dual reliability
 - closing with the main valve (3), from above (regular work),
 - closing with a pre-valve (2), from below (extraordinary work),
- * Isolation pre-valve (2) inside the hydrant, automatic, self-blocking, which enables:
 - that the other hydrants remain in operation even when the main valve (3) is malfunction,
 - to omit a separate isolation valve in front of the hydrant,
 - lower cost of procurement and maintenance of the hydrant network,
 - the use of a hydrant even when the main valve (3) is malfunction,
- * Large flow: ($K_v = 150 \text{ m}^3/\text{h}$; for $D_i = 2 \times 50$); less fire damage.
- * Control valve (7) = great safety of the executor, prevention of hydrant freezing.
- * Activation without additional tools, by turning the cap (5).
- * Easy activation: (class 1, MOT < 50Nm) longer service life.
- * Possibility of blocking (6) unauthorized use.
- * High reliability of closing; impermeability even after 1000 closings.
- * Outlets tilted (25°) down, longer service life of fire hoses.
- * The main valve seal is conical, self-flushing = dirt retention prevented = longer service life.
- * Very easy hydrant maintenance:
 - Replacing the main valve seal (3); without digging up the ground and without dismantling the body (4).
 - Possibility (7) of checking the correctness of the drain and main valve.
 - Repair of the drainage valve (10.1); from the outside, partial excavation, and without dismantling the hydrant.
- * Long warranty period 5 years.
- * Probably the best, and the most economical hydrant available

Flow of hydrant:

Documents accompanying the delivery of hydrant:

- * Declaration of Performance,
or Certificate of Constancy of Performance
- * Instruction for safety work (installation,
handling, inspection, maintenance, warranty)

$$Q = K_v \times (1000 \Delta p / \rho)^{1/2}$$

- flow $Q [\text{m}^3/\text{h}]$
- flow coefficient $K_v [\text{m}^3/\text{h}]$
- pressure difference $\Delta p [\text{bar}]$
- water density $\rho [\text{kg/m}^3]$